Download Unsupervised Machine Learning Projects with R RAR file from Nitroflare, Uploadable, Rapidgator ...
Unsupervised Machine Learning Projects with R
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 3 Hours | 717 MB Genre: eLearning | Language: English

Unsupervised Machine Learning Projects with R will help you build your knowledge and skills by guiding you in building machine learning projects with a practical approach and using the latest technologies provided by the R language such as Rmarkdown, R-shiny, and more. The areas this course addresses include effectively exploring and preparing data in R and RStudio and training, evaluating, and improving a model's performance (if needed). You will feel comfortable and confident after learning unsupervised and supervised Machine Learning algorithms.
In the first of the four sections comprising this course, we start by introducing you to concepts in Machine Learning, before then moving on to discuss projects in unsupervised Machine Learning. Next, we focus on two machine learning paradigms—K-Means Clustering and Principal Component Analysis—to grasp how they work and apply them to business Customer Segmentation (Market Segmentation Analysis). We finish the section by looking at the specific design aspects of Horizon 7 and how to approach a project, before finally looking at some example scenarios that will help you plan your own environment.All the work delivered into the R code script during the videos is available through nice html reports created by Rmarkdown.
By the end of the course, you will be able to train and improve real-world projects and models using unsupervised Machine Learning techniques
The code bundle for this video course is available at:

Download link:

Links are Interchangeable - Single Extraction - Premium is support resumable
Views: 50 | Tutorials/E-learnings
2-05-2018, 16:12
Related Articles:

Comments (0)

Currently there is no comment for Unsupervised Machine Learning Projects with R
be the first to add comment! Please register or Login